extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xS32) = S32xDic3 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.1(C2xS3^2) | 432,594 |
C6.2(C2xS32) = S3xC6.D6 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.2(C2xS3^2) | 432,595 |
C6.3(C2xS32) = Dic3:6S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.3(C2xS3^2) | 432,596 |
C6.4(C2xS32) = S3xD6:S3 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.4(C2xS3^2) | 432,597 |
C6.5(C2xS32) = S3xC3:D12 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.5(C2xS3^2) | 432,598 |
C6.6(C2xS32) = D6:4S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.6(C2xS3^2) | 432,599 |
C6.7(C2xS32) = D6:S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.7(C2xS3^2) | 432,600 |
C6.8(C2xS32) = (S3xC6):D6 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.8(C2xS3^2) | 432,601 |
C6.9(C2xS32) = C3:S3:4D12 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.9(C2xS3^2) | 432,602 |
C6.10(C2xS32) = S3xC32:2Q8 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.10(C2xS3^2) | 432,603 |
C6.11(C2xS32) = C33:5(C2xQ8) | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.11(C2xS3^2) | 432,604 |
C6.12(C2xS32) = C33:6(C2xQ8) | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.12(C2xS3^2) | 432,605 |
C6.13(C2xS32) = (S3xC6).D6 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.13(C2xS3^2) | 432,606 |
C6.14(C2xS32) = D6.S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.14(C2xS3^2) | 432,607 |
C6.15(C2xS32) = D6.4S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.15(C2xS3^2) | 432,608 |
C6.16(C2xS32) = D6.3S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.16(C2xS3^2) | 432,609 |
C6.17(C2xS32) = D6:S3:S3 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.17(C2xS3^2) | 432,610 |
C6.18(C2xS32) = D6.6S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 48 | 8- | C6.18(C2xS3^2) | 432,611 |
C6.19(C2xS32) = Dic3.S32 | φ: C2xS32/S32 → C2 ⊆ Aut C6 | 24 | 8+ | C6.19(C2xS3^2) | 432,612 |
C6.20(C2xS32) = D9xDic6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.20(C2xS3^2) | 432,280 |
C6.21(C2xS32) = D18.D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.21(C2xS3^2) | 432,281 |
C6.22(C2xS32) = Dic6:5D9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.22(C2xS3^2) | 432,282 |
C6.23(C2xS32) = Dic18:S3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.23(C2xS3^2) | 432,283 |
C6.24(C2xS32) = S3xDic18 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.24(C2xS3^2) | 432,284 |
C6.25(C2xS32) = D12:5D9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.25(C2xS3^2) | 432,285 |
C6.26(C2xS32) = D12:D9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.26(C2xS3^2) | 432,286 |
C6.27(C2xS32) = D6.D18 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.27(C2xS3^2) | 432,287 |
C6.28(C2xS32) = D36:5S3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.28(C2xS3^2) | 432,288 |
C6.29(C2xS32) = Dic9.D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.29(C2xS3^2) | 432,289 |
C6.30(C2xS32) = C4xS3xD9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.30(C2xS3^2) | 432,290 |
C6.31(C2xS32) = S3xD36 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.31(C2xS3^2) | 432,291 |
C6.32(C2xS32) = D9xD12 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.32(C2xS3^2) | 432,292 |
C6.33(C2xS32) = C36:D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.33(C2xS3^2) | 432,293 |
C6.34(C2xS32) = C2xC9:Dic6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.34(C2xS3^2) | 432,303 |
C6.35(C2xS32) = C2xDic3xD9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.35(C2xS3^2) | 432,304 |
C6.36(C2xS32) = D18.3D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.36(C2xS3^2) | 432,305 |
C6.37(C2xS32) = C2xC18.D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.37(C2xS3^2) | 432,306 |
C6.38(C2xS32) = C2xC3:D36 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.38(C2xS3^2) | 432,307 |
C6.39(C2xS32) = C2xS3xDic9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.39(C2xS3^2) | 432,308 |
C6.40(C2xS32) = Dic3.D18 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.40(C2xS3^2) | 432,309 |
C6.41(C2xS32) = D18.4D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4- | C6.41(C2xS3^2) | 432,310 |
C6.42(C2xS32) = C2xD6:D9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.42(C2xS3^2) | 432,311 |
C6.43(C2xS32) = C2xC9:D12 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.43(C2xS3^2) | 432,312 |
C6.44(C2xS32) = S3xC9:D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.44(C2xS3^2) | 432,313 |
C6.45(C2xS32) = D9xC3:D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | 4 | C6.45(C2xS3^2) | 432,314 |
C6.46(C2xS32) = D18:D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 36 | 4+ | C6.46(C2xS3^2) | 432,315 |
C6.47(C2xS32) = C22xS3xD9 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.47(C2xS3^2) | 432,544 |
C6.48(C2xS32) = S3xC32:4Q8 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.48(C2xS3^2) | 432,660 |
C6.49(C2xS32) = (C3xD12):S3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.49(C2xS3^2) | 432,661 |
C6.50(C2xS32) = D12:(C3:S3) | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.50(C2xS3^2) | 432,662 |
C6.51(C2xS32) = C3:S3xDic6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.51(C2xS3^2) | 432,663 |
C6.52(C2xS32) = C12.39S32 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.52(C2xS3^2) | 432,664 |
C6.53(C2xS32) = C12.40S32 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.53(C2xS3^2) | 432,665 |
C6.54(C2xS32) = C32:9(S3xQ8) | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.54(C2xS3^2) | 432,666 |
C6.55(C2xS32) = C12.73S32 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.55(C2xS3^2) | 432,667 |
C6.56(C2xS32) = C12.57S32 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.56(C2xS3^2) | 432,668 |
C6.57(C2xS32) = C12.58S32 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.57(C2xS3^2) | 432,669 |
C6.58(C2xS32) = C4xS3xC3:S3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.58(C2xS3^2) | 432,670 |
C6.59(C2xS32) = S3xC12:S3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.59(C2xS3^2) | 432,671 |
C6.60(C2xS32) = C3:S3xD12 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.60(C2xS3^2) | 432,672 |
C6.61(C2xS32) = C12:S32 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.61(C2xS3^2) | 432,673 |
C6.62(C2xS32) = C2xS3xC3:Dic3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.62(C2xS3^2) | 432,674 |
C6.63(C2xS32) = C62.90D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.63(C2xS3^2) | 432,675 |
C6.64(C2xS32) = C62.91D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.64(C2xS3^2) | 432,676 |
C6.65(C2xS32) = C2xDic3xC3:S3 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.65(C2xS3^2) | 432,677 |
C6.66(C2xS32) = C62.93D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.66(C2xS3^2) | 432,678 |
C6.67(C2xS32) = C2xC33:8(C2xC4) | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.67(C2xS3^2) | 432,679 |
C6.68(C2xS32) = C2xC33:6D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.68(C2xS3^2) | 432,680 |
C6.69(C2xS32) = C2xC33:7D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.69(C2xS3^2) | 432,681 |
C6.70(C2xS32) = C2xC33:8D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.70(C2xS3^2) | 432,682 |
C6.71(C2xS32) = C2xC33:4Q8 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.71(C2xS3^2) | 432,683 |
C6.72(C2xS32) = S3xC32:7D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.72(C2xS3^2) | 432,684 |
C6.73(C2xS32) = C3:S3xC3:D4 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.73(C2xS3^2) | 432,685 |
C6.74(C2xS32) = C62:23D6 | φ: C2xS32/S3xC6 → C2 ⊆ Aut C6 | 36 | | C6.74(C2xS3^2) | 432,686 |
C6.75(C2xS32) = C3:S3:Dic6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12- | C6.75(C2xS3^2) | 432,294 |
C6.76(C2xS32) = C12:S3:S3 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12+ | C6.76(C2xS3^2) | 432,295 |
C6.77(C2xS32) = C12.84S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 6 | C6.77(C2xS3^2) | 432,296 |
C6.78(C2xS32) = C12.91S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 6 | C6.78(C2xS3^2) | 432,297 |
C6.79(C2xS32) = C12.85S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 6- | C6.79(C2xS3^2) | 432,298 |
C6.80(C2xS32) = C12.S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12- | C6.80(C2xS3^2) | 432,299 |
C6.81(C2xS32) = C4xC32:D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 36 | 6 | C6.81(C2xS3^2) | 432,300 |
C6.82(C2xS32) = C3:S3:D12 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 36 | 12+ | C6.82(C2xS3^2) | 432,301 |
C6.83(C2xS32) = C12.86S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 36 | 6+ | C6.83(C2xS3^2) | 432,302 |
C6.84(C2xS32) = C2xHe3:2Q8 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 144 | | C6.84(C2xS3^2) | 432,316 |
C6.85(C2xS32) = C2xC6.S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.85(C2xS3^2) | 432,317 |
C6.86(C2xS32) = C62.8D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12- | C6.86(C2xS3^2) | 432,318 |
C6.87(C2xS32) = C62.9D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 6 | C6.87(C2xS3^2) | 432,319 |
C6.88(C2xS32) = C2xHe3:2D4 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.88(C2xS3^2) | 432,320 |
C6.89(C2xS32) = C2xHe3:(C2xC4) | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.89(C2xS3^2) | 432,321 |
C6.90(C2xS32) = C2xHe3:3D4 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.90(C2xS3^2) | 432,322 |
C6.91(C2xS32) = C62:D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 36 | 12+ | C6.91(C2xS3^2) | 432,323 |
C6.92(C2xS32) = C62:2D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 36 | 6 | C6.92(C2xS3^2) | 432,324 |
C6.93(C2xS32) = C22xC32:D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 36 | | C6.93(C2xS3^2) | 432,545 |
C6.94(C2xS32) = C3:S3:4Dic6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.94(C2xS3^2) | 432,687 |
C6.95(C2xS32) = C12:S3:12S3 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.95(C2xS3^2) | 432,688 |
C6.96(C2xS32) = C12.95S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.96(C2xS3^2) | 432,689 |
C6.97(C2xS32) = C4xC32:4D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.97(C2xS3^2) | 432,690 |
C6.98(C2xS32) = C12:3S32 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.98(C2xS3^2) | 432,691 |
C6.99(C2xS32) = C2xC33:9(C2xC4) | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | | C6.99(C2xS3^2) | 432,692 |
C6.100(C2xS32) = C62.96D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.100(C2xS3^2) | 432,693 |
C6.101(C2xS32) = C2xC33:9D4 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | | C6.101(C2xS3^2) | 432,694 |
C6.102(C2xS32) = C2xC33:5Q8 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | | C6.102(C2xS3^2) | 432,695 |
C6.103(C2xS32) = C62:24D6 | φ: C2xS32/C2xC3:S3 → C2 ⊆ Aut C6 | 24 | 4 | C6.103(C2xS3^2) | 432,696 |
C6.104(C2xS32) = C3xS3xDic6 | central extension (φ=1) | 48 | 4 | C6.104(C2xS3^2) | 432,642 |
C6.105(C2xS32) = C3xD12:5S3 | central extension (φ=1) | 48 | 4 | C6.105(C2xS3^2) | 432,643 |
C6.106(C2xS32) = C3xD12:S3 | central extension (φ=1) | 48 | 4 | C6.106(C2xS3^2) | 432,644 |
C6.107(C2xS32) = C3xDic3.D6 | central extension (φ=1) | 48 | 4 | C6.107(C2xS3^2) | 432,645 |
C6.108(C2xS32) = C3xD6.D6 | central extension (φ=1) | 48 | 4 | C6.108(C2xS3^2) | 432,646 |
C6.109(C2xS32) = C3xD6.6D6 | central extension (φ=1) | 48 | 4 | C6.109(C2xS3^2) | 432,647 |
C6.110(C2xS32) = S32xC12 | central extension (φ=1) | 48 | 4 | C6.110(C2xS3^2) | 432,648 |
C6.111(C2xS32) = C3xS3xD12 | central extension (φ=1) | 48 | 4 | C6.111(C2xS3^2) | 432,649 |
C6.112(C2xS32) = C3xD6:D6 | central extension (φ=1) | 48 | 4 | C6.112(C2xS3^2) | 432,650 |
C6.113(C2xS32) = S3xC6xDic3 | central extension (φ=1) | 48 | | C6.113(C2xS3^2) | 432,651 |
C6.114(C2xS32) = C3xD6.3D6 | central extension (φ=1) | 24 | 4 | C6.114(C2xS3^2) | 432,652 |
C6.115(C2xS32) = C3xD6.4D6 | central extension (φ=1) | 24 | 4 | C6.115(C2xS3^2) | 432,653 |
C6.116(C2xS32) = C6xC6.D6 | central extension (φ=1) | 48 | | C6.116(C2xS3^2) | 432,654 |
C6.117(C2xS32) = C6xD6:S3 | central extension (φ=1) | 48 | | C6.117(C2xS3^2) | 432,655 |
C6.118(C2xS32) = C6xC3:D12 | central extension (φ=1) | 48 | | C6.118(C2xS3^2) | 432,656 |
C6.119(C2xS32) = C6xC32:2Q8 | central extension (φ=1) | 48 | | C6.119(C2xS3^2) | 432,657 |
C6.120(C2xS32) = C3xS3xC3:D4 | central extension (φ=1) | 24 | 4 | C6.120(C2xS3^2) | 432,658 |
C6.121(C2xS32) = C3xDic3:D6 | central extension (φ=1) | 24 | 4 | C6.121(C2xS3^2) | 432,659 |